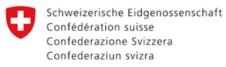
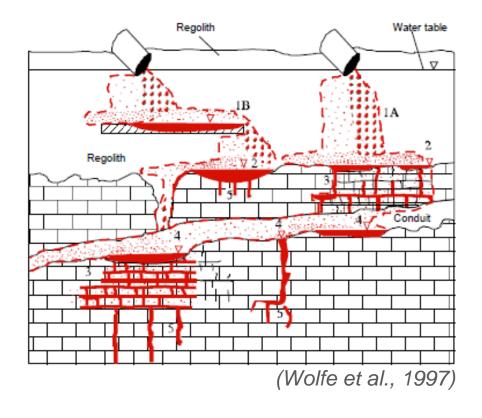


CHLOROKARST

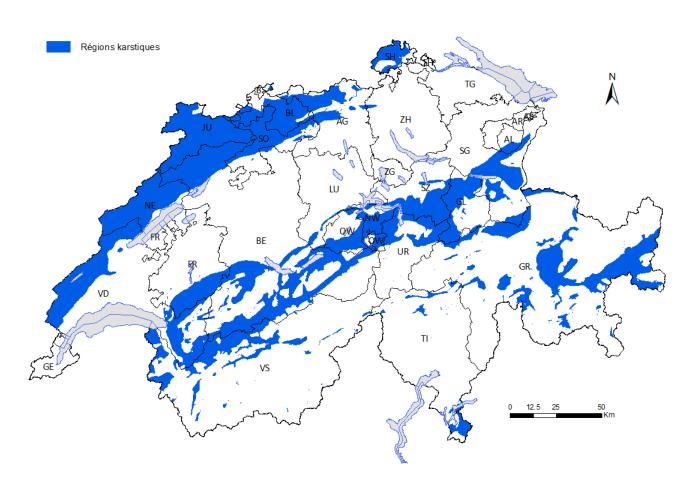

Avancement des travaux et premiers résultats concernant les capteurs passifs

A. Bapst, H. Demougeot-Renard, P. Renard



Office fédéral de l'environnement OFEV

Plan de l'exposé


- 1. Contexte
- 2. Problèmes posés
- 3. Objectifs du projet et programme de travail
- 4. Moyens d'investigation sélectionnés
- Terrains d'essai
- 6. Etat d'avancement
- 7. Premiers résultats sur les capteurs passifs
- 8. Travaux en cours et prochaines échéances

1. Contexte

Le karst : 24.5% de la surface de la Suisse

26'502 sites pollués aux HCC en Suisse

4'427 sites pollués aux HCC sur karst – 16.7 %

Dont 3'555 dans l'Arc Jurassien - 13.4 %

2. Problèmes posés

- Caractéristiques spécifiques des sites pollués sur karst
 - Difficulté de caractériser les foyers de pollution dans les massifs karstiques.
 - Forts taux de dilution et très grandes et rapides fluctuations de débits et concentrations aux principaux points d'observation «faciles» d'accès (exutoires des bassins versants).
 - Contribution possible de plusieurs sites à la pollution d'un même exutoire
 - Contribution possible d'un même site à la pollution de plusieurs exutoires (contamination à l'échelle des bassins versants).

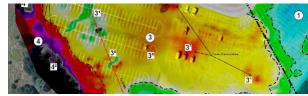
Difficulté d'application de l'OSites

- Difficulté de caractériser la pollution à l'aval immédiat d'un site (Art.9) (secteur où les substances sont encore «à peine» diluées).
- Difficulté de comparer les concentrations en polluants aux valeurs de référence de l'OSites.
- L'évaluation des sites pollués à l'échelle des bassins versants n'est pas prévue par la réglementation.
- Moyens d'investigation pas adaptés

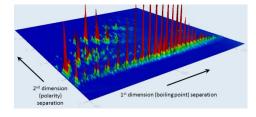
3. Objectifs du projet

- 1. Elaborer un processus d'évaluation OSites des sites pollués sur karst
- 2. Elaborer une démarche d'investigation des sites pollués sur karst
- 3. Tester et déployer une sélection de moyens d'investigation sur des terrains d'essai
 - Groupe de suivi du travail
 - Rapports publics de restitution des résultats
 - Présentations à l'occasion de rencontres professionnelles

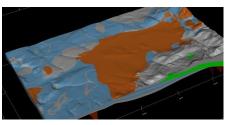
4. Moyens d'investigation sélectionnés


Détecter la présence d'HCC aux exutoires ou autres points d'observation

- Préleveurs automatiques d'échantillons
- Capteurs passifs intégratifs
- Mesures de paramètres en continu

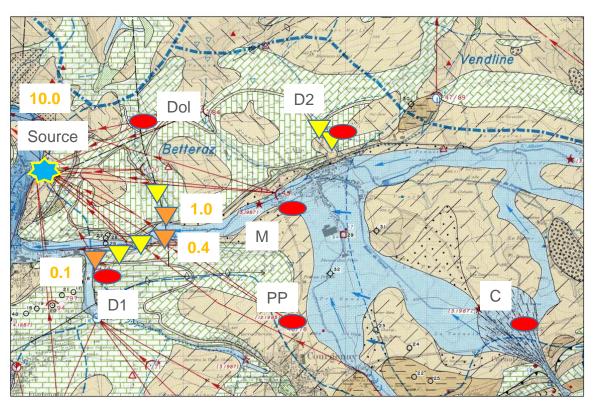

Localiser un foyer de pollution dans le massif calcaire fracturé

- Essais de pompages intégraux (essais hydrauliques)
- Mesures géophysiques


Différencier la contribution de sites pollués dans un même bassin versant

- Analyses chimiques fines 2xGC
- Analyses de ratios isotopiques
- Essais de traçage multi-sites

Compréhension globale du fonctionnement du bassin versant


- Modèles géologiques
- Modèles de réservoir

5. Terrains d'essai

Le bassin versant du Betteraz

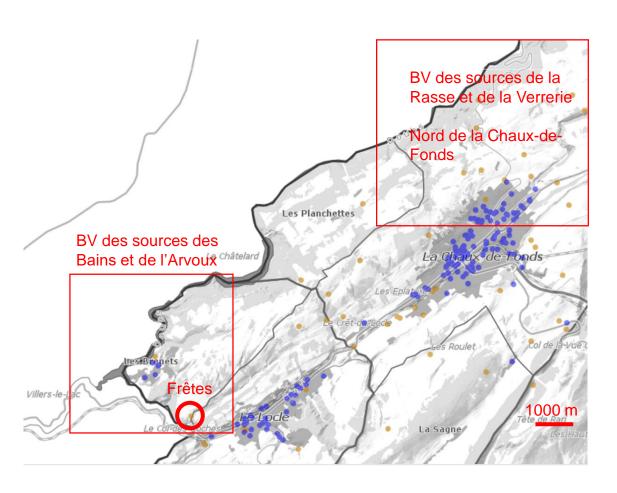
 $\overline{}$

Forages 2014 sans / avec traces de PER (microg/L)

Principaux foyers potentiels de pollution

Utilisation dans Chlorokarst

- Test et déploiement de dispositifs de prélèvement
 - Capteurs passifs mesures physico-chimiques en continu préleveurs automatiques
- Test des méthodes de différenciation des apports
 - 2xGC Isotopes Essais de traçage
- Modèles à l'échelle du bassin versant


Géologique 3D - Réservoirs

Et test des démarches!

5. Terrains d'essai

Les Côtes du Doubs

Utilisation dans Chlorokarst

Déploiement des dispositifs de prélèvement

Capteurs passifs pour la surveillance ou la détection de substances

Test des méthodes de différenciation des apports

2xGC – Isotopes - Essais de traçage

Et test des démarches!

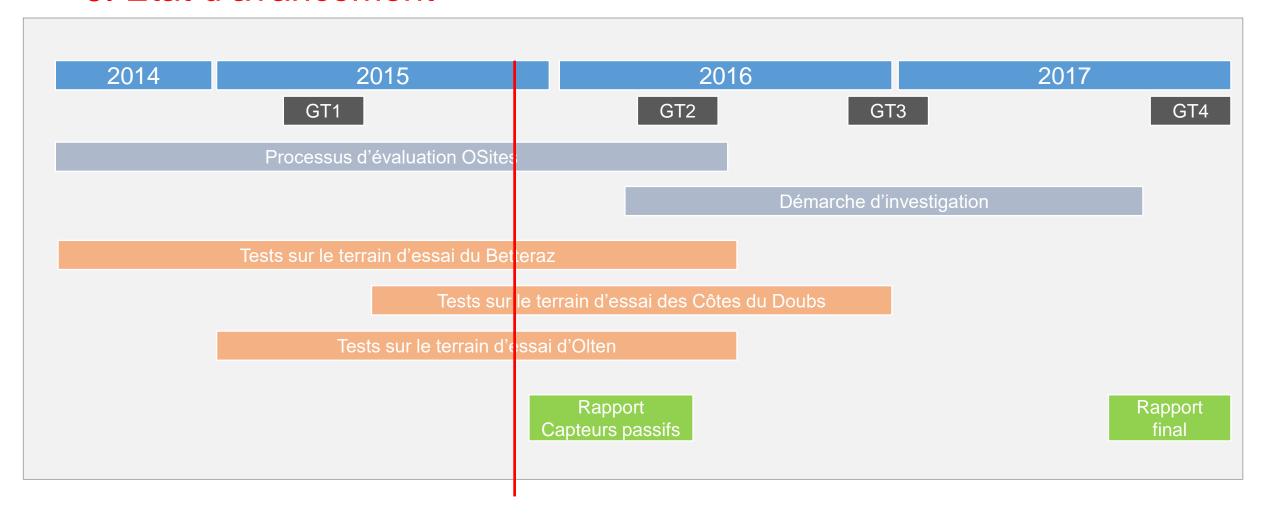
5. Terrains d'essai

Le site contaminé d'Olten

Utilisation dans Chlorokarst

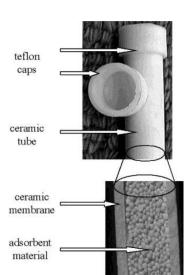
 Test des méthodes de localisation des foyers de pollution

Essai de pompage intégral – Mesures géophysiques


Déploiement des dispositifs de prélèvement

Capteurs passifs comme sentinelles en dehors du site – en présence de fortes concentrations

Et test des démarches!

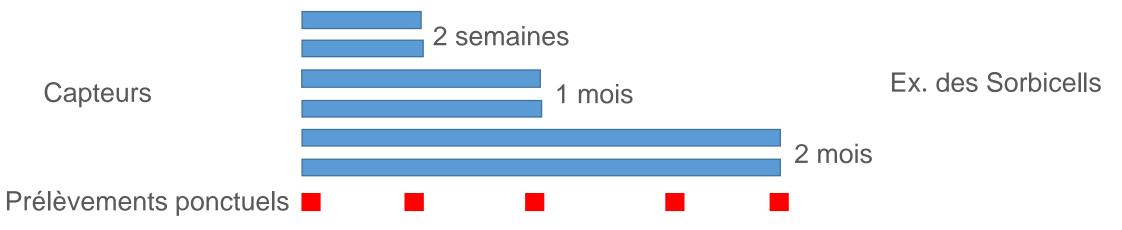

6. Etat d'avancement

- Critères de sélection
- Accumulation des hydrocarbures chlorés en priorité
- Exposition sur de longues périodes : 2 à 3 mois
- Détection de faibles et fortes concentrations
- Equipement de sources ou de forages piézométriques
- Résistance aux conditions d'écoulement des milieux karstiques
- Simplicité d'utilisation
- Dispositifs commerciaux (pas de nécessité de fabrication artisanale)

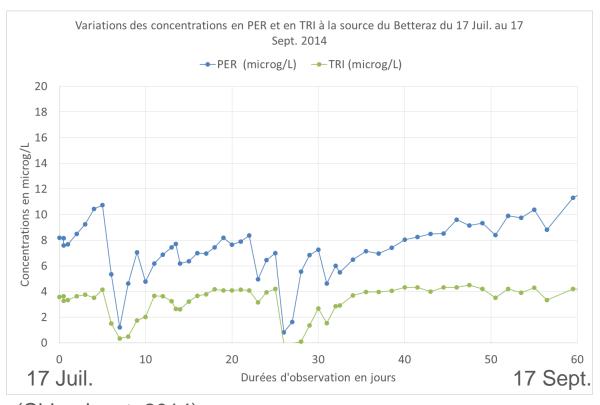
Dosimètres céramique (IMW-D)

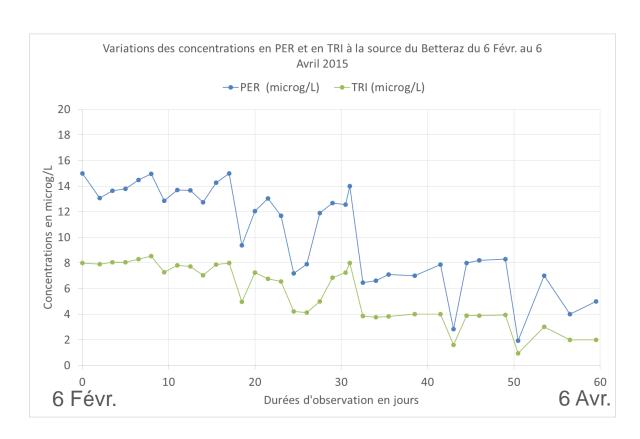
TIPS (AGI - USA)

Sorbicells (Sorbisense – DK)


Protocole opératoire

- ► Tests dans des sources et des piézomètres avec de faibles et fortes concentrations
- ► Test des 3 types de capteurs en même temps
- ► Analyses de laboratoire de référence prélèvements journaliers ou à chaque visite
- Mesures en continu de divers paramètres T°C conductivité niveaux statiques - débits
- ► Analyses des capteurs par les fournisseurs IMW / Uni Tübingen – AGI – Sorbisense / Eurofins
- Analyses des capteurs en duplicats
- ➤ Sorbicells : tests de différentes «résistances» (VOC-101 et VOC-102), et de dispositifs adaptés aux sources et aux piézomètres




- Evaluation réalisées
 - Deux types de résultats fournis par les capteurs :
 - Masse accumulée de substance durant la période d'exposition
 - Concentration moyenne en substance durant la période d'exposition
 - Deux types d'évaluation :
 - Etude de la progression de l'accumulation de substance selon la durée d'exposition
 - Comparaison de la concentration du capteur à la concentration moyenne de plusieurs échantillons d'eau prélevés de manière classique sur la période d'exposition (référence laboratoire)

Exemple des variations de concentration mesurées à la source du Betteraz

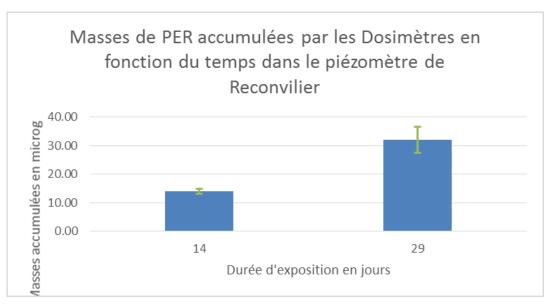
(Chlorokarst, 2014)

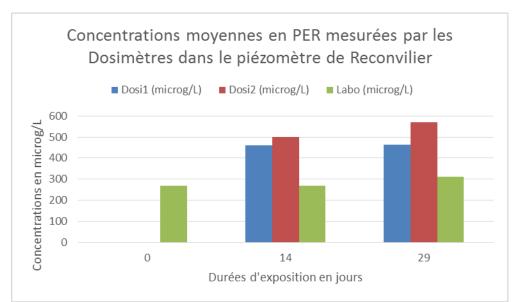
Concentrations en PER et TRI mesurées au préleveur automatique durant les 2 principales périodes d'exposition des capteurs : 17 juil.-17.sept. 2014 et 06 févr.-06. avril 2015

Résultats obtenus avec les dosimètres céramique – faibles concentrations

Source du Betteraz – 10 microg/L PER – 3 à 4 microg/L TRI

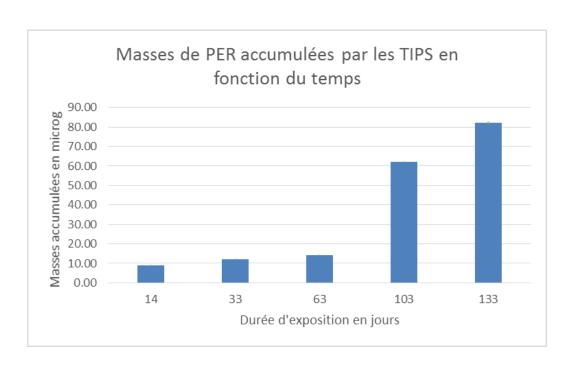
			Analyses Dosimètres		Références Labo		
Durée jours	Durée mois	Température °C	PER microg/L	TRI microg/L	12DCE microg/L	PER microg/L	TRI microg/L
33	1	10.9-11.1	<40	<40	<30	6.61	2.83
63	2	10.9-11.1	<20	<20	<15	7.58	3.28
103	>3	11.1-11.3	<15	<15	<10	11.40	3.86
133	>4	11.0	<12	<12	<8	10.66	3.82

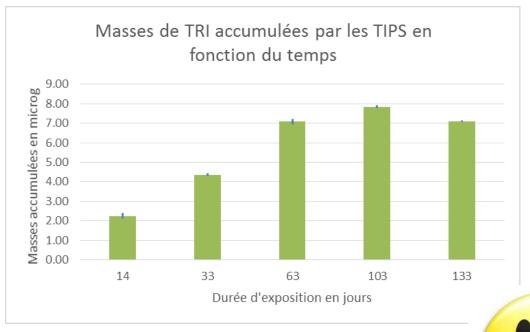

Les dosimètres ne détectent pas les faibles concentrations de la source du Betteraz même après plus de 4 mois d'exposition.



Résultats obtenus avec les dosimètres céramique – fortes concentrations

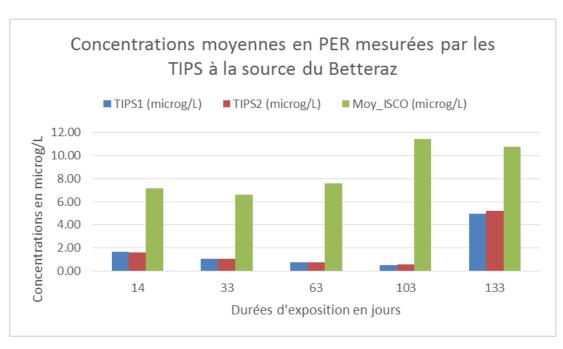
Piézomètre de Reconvilier – 250 microg/L de PER

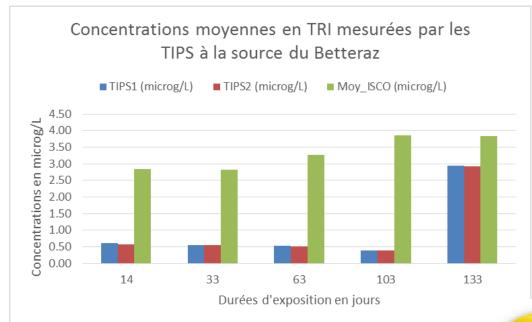



Les dosimètres détectent les concentrations en PER du piézomètre de Reconvilier, mais en les surestimant.

Résultats obtenus avec les TIPS – faibles concentrations

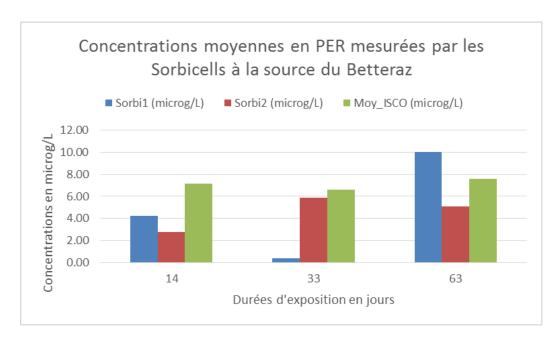
Source du Betteraz – 10 microg/L PER – 3 à 4 microg/L TRI

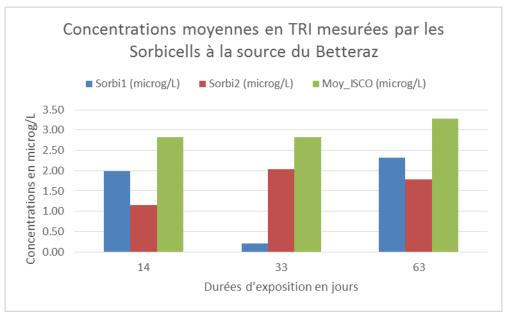



Les TIPS accumulent progressivement les composés chlorés durant 3 mois.

Résultats obtenus avec les TIPS – faibles concentrations

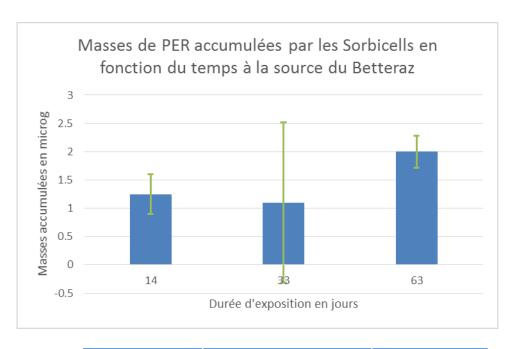
Source du Betteraz – 10 microg/L PER – 3 à 4 microg/L TRI



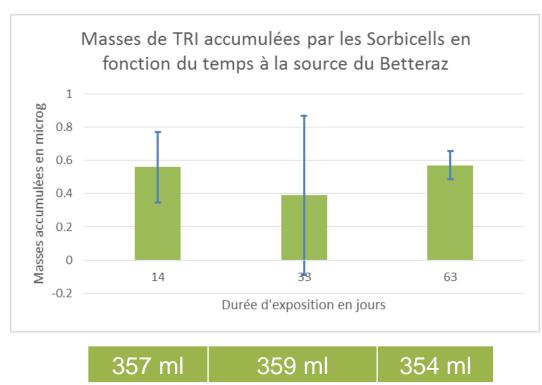

Relation insatisfaisante établie par le fournisseur entre les concentrations dans les TIPS et les concentrations de référence (forte sous-estimation).

Résultats obtenus avec les Sorbicells – faibles concentrations
 Source du Betteraz – 10 microg/L PER – 3 à 4 microg/L TRI

Les Sorbicells retrouvent les concentrations de référence en PER et en TRI.

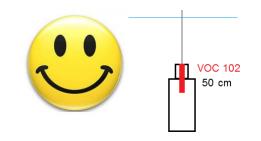


7. Premiers résultats sur les capteurs passifs

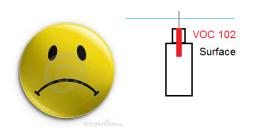

Résultats obtenus avec les Sorbicells – faibles concentrations Source du Betteraz – 10 microg/L PER – 3 à 4 microg/L TRI

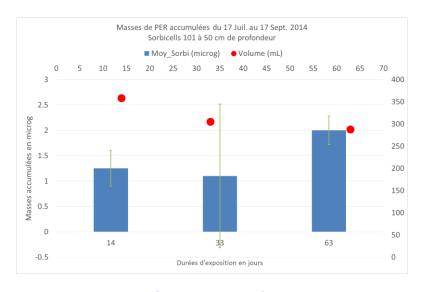
354 ml

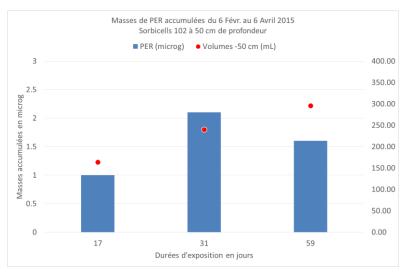
359 ml


L'accumulation de substance s'est arrêtée dès les 15 premiers jours (réservoir plein).

357 ml




Sorbicells : test de différentes résistances au flux


VOC 101 50 cm

Source du Betteraz

Masses de PER accumulées du 6 Févr. au 6 Avril 2015
Sorbicells 102 sous la surface de l'eau

PER (microg) Volumes -Surface (mL)

3

400

350

300

400

350

2250

380

250

380

480

390

150

980

150

980

100

17

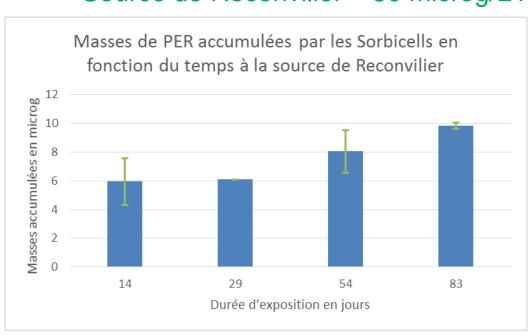
31

59

Durées d'exposition en jours

Faible résistance à 50 cm prof. Réservoir rempli dès 2 semaines

Haute résistance à 50 cm prof. Remplissage ≤ 300 mL


Haute résistance en surface Remplissage ≤ 100 mL

©ChloroNet

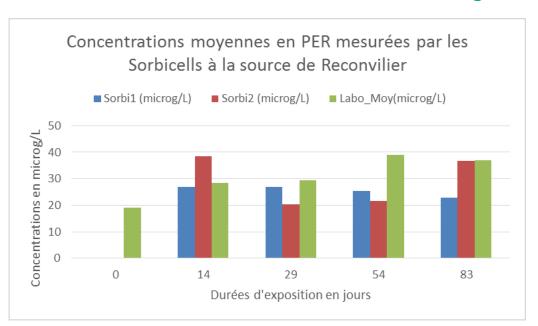
7. Premiers résultats sur les capteurs passifs intégratifs

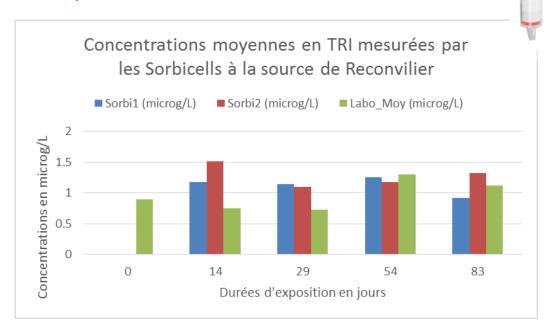
Résultats obtenus avec les Sorbicells – fortes concentrations

Source de Reconvilier – 30 microg/L PER - capteurs de faible résistance en surface

185 ml | 250 ml | 330 ml | 400 ml

185 ml | 250 ml | 330 ml | 400 ml




L'accumulation de substance s'est arrêtée au bout de 2/3 mois (réservoir plein)

Résultats obtenus avec les Sorbicells

Source de Reconvilier – 30 microg/L PER - capteurs de faible résistance en surface

Les Sorbicells reproduisent correctement les concentrations de référence.

ChloroNet

26. November 2015

Bilan des premiers tests

Dosimètres céramique

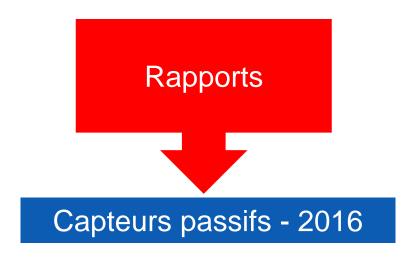
TIPS

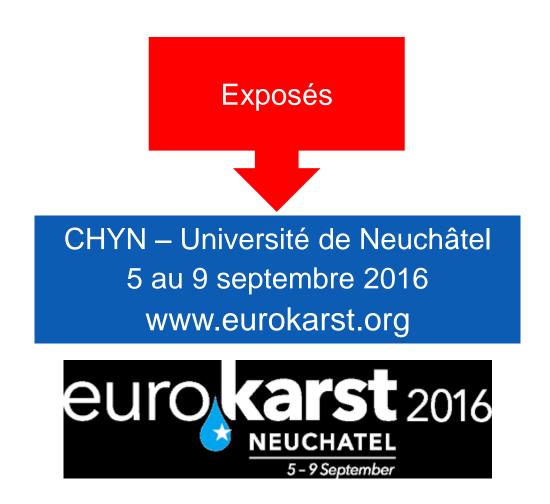
Des sentinelles!

Mise en évidence d'une pollution

Masse accumulée d'HCC

Concentration moyenne sur la période




8. Travaux en cours et prochaines échéances

Processus d'évaluation OSites des sites pollués sur karst	 Premier projet élaboré En cours de discussion au sein de l'OFEV (sites pollués, eaux souterraines, service juridique) et avec un groupe de travail restreint 		
Démarche d'investigation	► A venir après validation du processus d'évaluation OSites		
Test et déploiement de moyens d'investigation	 Sorbicells testés dans des piézomètres (labo et terrain) Sorbicells déployés à l'échelle des bassins versants – Côtes du Doubs et Betteraz Analyses 2xGC et isotopiques dans des échantillons ponctuels et des capteurs passifs - Betteraz Analyse statistique des séries temporelles - Betteraz Modèle géologique - Betteraz Modèle de réservoir - Betteraz Interprétation des essais hydrauliques – Olten 		

8. Travaux en cours et prochaines échéances

Tous nos remerciements à :

- OFEV : Christiane Wermeille, Reto Tietz
- Groupe de travail: Christophe Badertscher, Isabelle Butty, Jean-Pierre Clément, Jean Fernex, François Gainon, André Kissling, Olivier Kissling, Ronald Kozel, Karl Stransky, Edgar Stutz
- Equipe de projet : Laurence Fischer, Pascale Girod, Didier Lambert, Oliver Tomson, Célia Trunz